Principales tendencias de Edge AI

Autor David Purón, CEO de Barbara.

La IA Edge o IA en el Edge ha surgido como una tecnología que cambia las reglas del juego para el mundo industrial. Las industrias con activos críticos altamente distribuidos serán las grandes beneficiarias de llevar la informática avanzada al Edge.

Desde que se incorporó como campo de estudio en 1956 en las universidades, la Inteligencia Artificial ha pasado por periodos de optimismo y pesimismo a partes iguales. No cabe duda de que hoy asistimos a uno de gran optimismo.

El nacimiento de grandes modelos de IA generativa y LLM’s (Large Language Models) cómo CHAT GPT o Bard, sumado a la explosión de talento en el sector (Data Science es el tercer puesto de trabajo más buscado a nivel mundial (de hecho, en nuestro reciente estudio, sobre el Estado del Edge Computing en España, Data Scientist es el profesional más buscado entre las empresas españolas) está catapultando el crecimiento de este mercado de forma exponencial, lo que le llevará a alcanzar los 190.000 millones de dólares en 2025).

El auge de la IA Edge

La IA de borde se puede resumir como la capacidad de ejecutar algoritmos de inteligencia artificial en dispositivos locales que están muy cerca de la fuente de datos. 

Estamos en un momento de explosión del Edge Computing donde más del 90% de las organizaciones dan una prioridad media, alta o muy alta a la incorporación de soluciones que habiliten el tiempo real en sus operaciones.

El mercado mundial de software de IA en el Edge crecerá un 400%, pasando de 800 millones de dólares en 2022 a 3100 millones de dólares en 2027. Según Gartner: La capacidad de crear resultados basados en IA a través del Edge es la refactorización de valor más impactante en el mercado tecnológico desde el cloud computing, Lo que le ha llevado a situar la IA Edge en el centro de su radar tecnológico para este 2023.

Las 5 tendencias más disruptivas en Edge AI

1. Las industrias críticas serán las principales impulsoras: 

En Barbara estamos encontrando patrones repetidos en industrias que están a la vanguardia en Edge AI. Todas ellas manejan muchos activos críticos distribuidos. Es decir, son industrias que se enfrentan a grandes retos de fragmentación tecnológica, escalabilidad y ciberseguridad y que se pueden minimizar ejecutando algoritmos de IA en el Edge. Podemos pronosticar que estas industrias desarrollarán casos de uso muy ambiciosos y transformadores.

Los sistemas SCADA que se vienen utilizando desde los años 80 tienen finalidades similares en cuanto a recogida y procesamiento de datos. Sin embargo, los sistemas SCADA necesitan complementarse con tecnologías más modernas para que puedan responder a los requisitos cada vez más exigentes de interoperabilidad, apertura y seguridad, donde Edge AI puede ayudar y puede multiplicar el valor de estos sistemas.

2. El Thin Edge complementará al Thick Edge

Existen diferentes interpretaciones sobre el significado de «borde» cuando nos referimos a Edge AI. El Edge tiene cierta profundidad en si mismo. Tradicionalmente, el borde se ha identificado como la infraestructura del operador de red más cercana al usuario. Cuando hablamos de redes 5G, nos referimos a operadores que están desplegando multitud de nodos denominados «Multiaccess Edge Computing» que se utilizan para el procesamiento de datos cercano. Estos nodos están instalados en servidores muy similares a los que se pueden encontrar en un centro de datos diseñado para albergar servicios en la nube y tienen un alto potencial, así como la capacidad de recursos para procesar algoritmos complejos de IA. Es lo que algunos analistas denominan «Thick» Edge.

Sin embargo, hay otro tipo de Nodos Edge, los que se conectan directamente a sensores y conmutadores que se instalan en dispositivos de baja potencia como gateways o concentradores y ejecutan algoritmos de IA más sencillos con tiempos de respuesta más cortos muy cercanos a las respuestas en tiempo real. Este nuevo tipo de Edge, denominado «Thin» Edge, es muy adecuado para abordar rápidamente proyectos a gran escala que impliquen ubicaciones remotas o requisitos de alta seguridad.

3. Edge Mesh como paradigma de la Inteligencia Artificial distribuida.

La IA Edge se basa tradicionalmente en modelos de decisión que se entrenan utilizando grandes datos. El modelo, que consiste en una serie de fórmulas matemáticas, se instala en los nodos Edge. A partir de ahí, cada nodo es capaz de tomar sus propias decisiones en función de los datos que recibe y del modelo que se ha instalado.

Este nuevo paradigma, conocido como Edge Mesh, hace posible que la decisión de un nodo esté condicionada por la de otros nodos, como si se tratara de una red reticular. Un buen ejemplo para entender la potencia de esta nueva arquitectura es un sistema de tráfico inteligente.

Un nodo Edge puede tomar decisiones sobre la hora de un semáforo utilizando algoritmos de IA que tienen en cuenta el número de coches y personas detectados por los sensores. Sin embargo, esta decisión podría complementarse perfectamente con las que tomen otros nodos en calles cercanas.

El objetivo de Edge Mesh es distribuir la inteligencia entre varios nodos para ofrecer mejor rendimiento, tiempos de respuesta y tolerancia a los fallos que con las arquitecturas más tradicionales.

4. La gestión del ciclo de vida mediante MLOps, cada vez más importante

A medida que la industria avanza hacia el despliegue de Edge AI con más nodos distribuidos y algoritmos de entrenamiento más complejos, la capacidad de mantener el ciclo de vida de estos modelos entrenados, y los dispositivos que los ejecutan, será clave para el futuro de esta tecnología.

En este sentido, se potenciarán los proyectos y empresas que apliquen la filosofía DevOps para el desarrollo, despliegue y mantenimiento de algoritmos de IA. Esta filosofía se denomina MLOps, una combinación de Machine Learning y DevOps.

Pero, ¿en qué consiste exactamente? MLOps pretende reducir los tiempos de desarrollo, prueba y aplicación de los modelos de IA en el Edge mediante una integración continua de equipos y entornos de desarrollo, pruebas y operaciones.

5. Edge AI permite el intercambio de datos soberanos

No cabe duda de que el intercambio de datos será primordial para mejorar los procesos en los sectores industriales con muchas partes interesadas dentro de la cadena de valor.

Analicemos el modelo de red eléctrica del futuro, la conocida cómo Smart Grid. Para poder recibir u ofrecer un mejor servicio, es esencial que los proveedores sean capaces de analizar y procesar la información de una serie de partes interesadas como prosumidores, operadores, distribuidores, agregadores, etc. Sin un intercambio de datos transparente y ágil será imposible alcanzar la optimización de la red requerida para 2050.

Con Edge AI es posible un procesamiento de datos centralizado, lo que ayudará a superar algunos de los obstáculos a los que se enfrenta actualmente el sector, como la seguridad, la privacidad y la soberanía de los datos.

Si estás interesado en EDGE AI. Consulta la web de Barbara.

 

TE PUEDE GUSTAR

EVENTOS

RECIBE NUESTRA NEWSLETTER

*Email:

*Nombre:

*Empresa:

Cargo:

Sector:
     

Please don't insert text in the box below!

ESCUCHA NUESTRO PODCAST

SÍGUENOS EN RRSS

MÁS COMENTADOS

Scroll al inicio