Los bancos podrán predecir el riesgo de impago de nuevos clientes

La transformación digital en los bancos permitirá mejorar en un 30% la capacidad para predecir el riesgo de impago en la admisión de nuevos clientes.

Los bancos tendrán menos morosos en el futuro. La tecnología esta transformando procesos internos, ofertas para el consumidor final y la relación con el cliente; esto ha permitido la creación de nuevos productos y servicios más personalizados. El Big Data y las técnicas avanzadas de Machine Learning mejoran la capacidad de predicción de los modelos de evaluación del riesgo de impago hasta un 30%, según la experiencia observada en diversas carteras por Experian, compañía tecnológica especializada en servicios crediticios, analítica avanzada y data.

En el Databank ya se expuso el problema de la explotación masiva de datos dentro de este sector. Los últimos estudios de Experian apuntan a que el 82% de los directivos son conscientes de la relevancia de los datos y la analítica avanzada para los negocios, y aumentan sus inversiones de cara a poder generar modelos predictivos que les permitan mejorar sus resultados de forma sistemática. Gracias a los mismos, dicha cantidad de data se convierte en insights de valor añadido para la toma de decisiones de negocio y la configuración de su estrategia empresarial.

“Las compañías deben ser capaces de extraer información de múltiples fuentes, así como de interpretarla y explotarla estadísticamente para crear modelos analíticos avanzados, y mejorar sus cuadros de mando de gestión y segmentación de clientes”, explica Ricardo García, Iberia Analytics Director de Experian. Todos estos procesos ayudan a la evaluación y cuantificación del riesgo crediticio, así como a mejorar las estrategias de marketing.

El Machine Learning ayuda a los bancos a detectar impagos

Los sistemas de clasificación de clientes actuales utilizan motores de análisis basados en Machine Learning. Estos motores consideran las características sociodemográficas del usuario, su edad y comportamiento de pago histórico para la evaluación del riesgo. “Los modelos estadísticos avanzados de evaluación del riesgo de impago consiguen minimizar pérdidas, ya que predicen de forma más ajustada qué clientes tienen una mayor probabilidad de ser peores pagadores. Adicionalmente, previenen mejor el fraude para así tomar medidas al respecto. Por ejemplo, según nuestra experiencia, este tipo de modelos permiten mejorar hasta un 30% la capacidad de discriminación para nuevos clientes”, explica Ricardo.

Además, estas tecnologías permiten identificar mejor a aquellos pagadores “excelentes” entre la población de buenos pagadores. Evaluar la capacidad de pago de un consumidor es de importancia crítica cuando se trata de encontrar el producto o servicio idóneo. “Y hablarle directamente de sus necesidades. Es decir, personalizar la oferta, con mayor probabilidad de acertar, y de forma más eficiente. Mediante la utilización de nuestros modelos, muchas compañías están incorporando en su gestión técnicas analíticas y fuentes de datos que previamente no se contemplaban”, apunta el director de Experian.

Los modelos predictivos desarrollados por Experian están orientados al sector bancario, financiero, asegurador, telco, retail y utillities. “Son muchos los sectores que están invirtiendo en metodologías analíticas avanzadas, y las empresas tecnológicas consiguen mejorar exponencialmente sus herramientas en cada versión. Nuestros últimos modelos mejoran en un rango de 10-20 puntos en su capacidad predictiva respecto a versiones anteriores. Dicha mejora se observa a lo largo de diferentes carteras de forma consistente para todos los sectores”, concluye.

TE PUEDE GUSTAR

Artículo de opinión de Salud Martín, gerente de Digital Data en la Fundación Juan XXIII sobre la importancia de esta digitalización en pleno siglo
El avance innovador de la Inteligencia Artificial permite hoy en día analizar datos, reconocer patrones, automatizar la robótica y la conciencia perceptiva, dotándole de

EVENTOS

RECIBE NUESTRA NEWSLETTER

*Email:

*Nombre:

*Empresa:

Cargo:

Sector:
     

Please don't insert text in the box below!

ESCUCHA NUESTRO PODCAST

SÍGUENOS EN RRSS

MÁS COMENTADOS

Scroll al inicio