Los algoritmos aprenderán como los humanos

Los recuerdos pueden ser tan difíciles de retener para las máquinas como para los humanos. Para ayudar a entender por qué los agentes artificiales desarrollan lagunas en sus propios procesos cognitivos, ingenieros eléctricos de la Universidad Estatal de Ohio han analizado en qué medida influye en su rendimiento general un proceso llamado «aprendizaje continuo».

El aprendizaje continuo consiste en entrenar a un ordenador para que aprenda continuamente una secuencia de tareas, utilizando los conocimientos acumulados en tareas anteriores para aprender mejor las nuevas.

Sin embargo, un gran obstáculo que los científicos aún deben superar para alcanzar tales cotas es aprender a sortear el equivalente en aprendizaje automático de la pérdida de memoria, un proceso que en los agentes de IA se conoce como «olvido catastrófico». A medida que las redes neuronales artificiales se entrenan en una nueva tarea tras otra, tienden a perder la información obtenida en esas tareas anteriores, una cuestión que podría volverse problemática a medida que la sociedad confíe cada vez más en los sistemas de IA, afirma Ness Shroff, Ohio Eminent Scholar y profesor de ciencias e ingeniería informáticas de la Universidad Estatal de Ohio.

«A medida que las aplicaciones de conducción automatizada u otros sistemas robóticos aprenden cosas nuevas, es importante que no olviden las lecciones que ya han aprendido por nuestra seguridad y la suya», afirma Shroff. «Nuestra investigación profundiza en las complejidades del aprendizaje continuo en estas redes neuronales artificiales, y lo que encontramos son conocimientos que empiezan a salvar la distancia entre cómo aprende una máquina y cómo aprende un humano».

Los algoritmos tradicionales de aprendizaje automático se entrenan con datos de una sola vez, pero los resultados de este equipo demuestran que factores como la similitud de las tareas, las correlaciones negativas y positivas e incluso el orden en que se enseña una tarea a un algoritmo influyen en el tiempo que una red artificial retiene ciertos conocimientos.

Por ejemplo, según Shroff, para optimizar la memoria de un algoritmo hay que enseñarle tareas distintas al principio del proceso de aprendizaje continuo. Este método amplía la capacidad de la red para captar nueva información y mejora su habilidad para aprender posteriormente más tareas similares.

Su trabajo es especialmente importante, ya que comprender las similitudes entre las máquinas y el cerebro humano podría allanar el camino hacia una comprensión más profunda de la IA, afirma Shroff.

TE PUEDE GUSTAR

EVENTOS

RECIBE NUESTRA NEWSLETTER

*Email:

*Nombre:

*Empresa:

Cargo:

Sector:
     

Please don't insert text in the box below!

ESCUCHA NUESTRO PODCAST

SÍGUENOS EN RRSS

MÁS COMENTADOS

Scroll al inicio
Resumen de privacidad

Las cookies y otras tecnologías similares son una parte esencial de cómo funciona nuestra web. El objetivo principal de las cookies es que tu experiencia de navegación sea más cómoda y eficiente y poder mejorar nuestros servicios y la propia web. Aquí podrás obtener toda la información sobre las cookies que utilizamos y podrás activar y/o desactivar las mismas de acuerdo con tus preferencias, salvo aquellas Cookies que son estrictamente necesarias para el funcionamiento de la web de BigDataMagazine. Ten en cuenta que el bloqueo de algunas cookies puede afectar tu experiencia en la web y el funcionamiento de la misma. Al pulsar “Guardar cambios”, se guardará la selección de cookies que has realizado. Si no has seleccionado ninguna opción, pulsar este botón equivaldrá a rechazar todas las cookies. Para más información puedes visitar nuestra Políticas de Cookies. Podrás cambiar en cualquier momento tus preferencias de cookies pinchando en el enlace “Preferencias de cookies” situado en la parte inferior de nuestra web.