Las empresas que implantan la IA a escala incrementan más su facturación y eficiencia operativa

Un nuevo informe del Instituto de Investigación de Capgemini analiza el ritmo de adopción de la inteligencia artificial (IA) en las empresas en los últimos tres años.

Más de la mitad de las firmas (53%) ya ha superado la etapa experimental, un marcado aumento en comparación con el 36% del informe de 2017 de Capgemini sobre la misma cuestión. Además, el 78% de los líderes en IA a gran escala en sus procesos sigue progresando en sus iniciativas de IA al mismo ritmo que antes de la covid-19, mientras otro 21% ha acelerado la implementación. El contraste con las «empresas con dificultades» es evidente: el 43% ha retirado sus inversiones, mientras otro 16% ha suspendido todas las iniciativas de IA por la elevada incertidumbre empresarial relacionada con el coronavirus.

El informe The AI Powered Enterprise: Unlocking the potential of AI at scale, muestra que la implementación satisfactoria de la IA a gran escala puede tener ventajas tangibles en sus ingresos. El 79% de líderes en IA a gran escala ha visto un incremento de más del 25% en ventas de productos y servicios tradicionales. Además, el 62% de los líderes en IA a gran escala ha notado un descenso del 25%, como mínimo, en el número de quejas de clientes, y un 71% asegura una reducción de al menos un 25 % en amenazas de seguridad.

Punto de vista sectorial

Dentro de los cinco sectores principales que lideran la adopción de IA, ciencias de la salud y retail están muy por delante de los otros: Un 27% y 21% de las empresas de estos sectores, respectivamente, es líder en IA a gran escala, respectivamente. Les siguen la automoción y los productos de consumo, con un 17% cada uno, y telecomunicaciones (14%). Solo el 38% de las empresas de ciencias de la vida han suspendido o retirado inversiones a causa de la covid-19, en comparación con los sectores de seguros (66%), la banca (64%) y servicios públicos (64%). Esto refleja la importancia de la salud electrónica en el contexto actual, donde los asistentes virtuales, las aplicaciones de rastreo de contactos y los chatbots están proliferando conforme organizaciones como la Organización Mundial de la Salud lanzan herramientas basadas en la IA para recopilar y proporcionar información durante la pandemia. 

Los datos de confianza y calidad son esenciales

Los líderes en IA a gran escala consideran que la mejor manera de obtener más beneficios de sus sistemas de IA es «mejorar la calidad de los datos». Una política de datos robusta garantiza que los equipos de IA tengan datos de calidad adecuada, y mejora la confianza depositada en estos a nivel ejecutivo. La implantación de las plataformas tecnológicas necesarias, como una arquitectura híbrida en la nube y la democratización del acceso a datos, conforman los pilares para aplicar la IA a mayor escala.

La contratación de líderes en IA especializados es clave

El estudio de Capgemini muestra que el 70% de las empresas considera la falta de talento entre los niveles medio y sénior como un gran desafío para la escalabilidad de la IA. Más de la mitad de los líderes en IA (58%) ha nombrado a un responsable de IA que pueda aportar a los equipos de desarrollo una visión concreta, establecer directrices en torno a la priorización de casos de uso, ética y seguridad, y que unifique el uso de plataformas y herramientas para el desarrollo de la IA. Las compañías también han de centrarse en una amplia gama de competencias para la implantación de aplicaciones de IA a gran escala dentro de la organización que van más allá de habilidades puramente técnicas, tales como análisis de negocio y especialistas en gestión de cambio. Sin embargo, actualmente, hay una brecha considerable entre la oferta y la demanda en disciplinas importantes como el machine learning o la visualización de datos. Por lo tanto, la formación y la mejora de cualificaciones son críticas para salvar esta distancia y garantizar que estos conjuntos de competencias se quedan en la propia empresa. 

Las interacciones con una IA ética

Independientemente de la gran atención que cliente y normativa ponen en la ética de la IA, Capgemini ha observado que muchas empresas no están abordando activamente ciertos problemas, como la necesidad de tener un equipo ético capacitado. El informe indica que menos de un tercio de las empresas con dificultades para escalar la IA (29%, en comparación con el 90% de líderes en esta tecnología) está de acuerdo en que cuentan con conocimientos detallados sobre cómo y por qué sus sistemas de IA dan los resultados que dan. Esto es importante a nivel ejecutivo, a efectos de confiar en los sistemas organizativos de IA. A la vez, es imposible establecer una confianza con el cliente si el personal de cara al público carece de ella en los modelos o datos que utilizan las empresas.

En palabras de Anne-Laure Thieullent, Responsable Global de la oferta Inteligencia artificial y Analítica de Capgemini: «En el contexto de la reciente crisis de Covid-19, si bien las empresas esperan que los datos y la IA refuercen sus operaciones, todavía hay una necesidad de conexiones más fuertes entre la implementación y los objetivos empresariales generales para llegar a una escala mayor. Nuestro estudio pone de relieve que las empresas con más éxito combinan esfuerzos para racionalizar y modernizar su gestión de datos y procesos de gobernanza; enfocarse en implementar herramientas más ágiles a través de ecosistemas de partners; usar metodologías como DataOps y MLOps (machine learning ops) para desarrollar e implantar soluciones IA; crear equipos con perfiles diversos y generar modelos de negocios equilibrados».

El informe concluye con recomendaciones de cuatro principios para que las empresas se centren en la ampliación satisfactoria de la escala de IA:

  • Facultar: desarrollar una base fuerte que ofrezca un acceso sencillo a datos de confianza y calidad a través de las plataformas y herramientas de datos e IA adecuadas, junto con prácticas ágiles.
  • Poner en funcionamiento: implantar la IA a través del modelo operativo apropiado, priorizar iniciativas y garantizar un gobierno equilibrado, mientras se integra la ética.
  • Educar: desarrollar el talento diversificado y la cooperación con ecosistemas y colaboradores.
  • Llevar un seguimiento y amplificar: llevar un seguimiento continuo de la precisión y rendimiento del modelo para cumplir y amplificar los resultados de negocio.

TE PUEDE GUSTAR

EVENTOS

RECIBE NUESTRA NEWSLETTER

*Email:

*Nombre:

*Empresa:

Cargo:

Sector:
     

Please don't insert text in the box below!

ESCUCHA NUESTRO PODCAST

SÍGUENOS EN RRSS

MÁS COMENTADOS

Scroll al inicio
Resumen de privacidad

Las cookies y otras tecnologías similares son una parte esencial de cómo funciona nuestra web. El objetivo principal de las cookies es que tu experiencia de navegación sea más cómoda y eficiente y poder mejorar nuestros servicios y la propia web. Aquí podrás obtener toda la información sobre las cookies que utilizamos y podrás activar y/o desactivar las mismas de acuerdo con tus preferencias, salvo aquellas Cookies que son estrictamente necesarias para el funcionamiento de la web de BigDataMagazine. Ten en cuenta que el bloqueo de algunas cookies puede afectar tu experiencia en la web y el funcionamiento de la misma. Al pulsar “Guardar cambios”, se guardará la selección de cookies que has realizado. Si no has seleccionado ninguna opción, pulsar este botón equivaldrá a rechazar todas las cookies. Para más información puedes visitar nuestra Políticas de Cookies. Podrás cambiar en cualquier momento tus preferencias de cookies pinchando en el enlace “Preferencias de cookies” situado en la parte inferior de nuestra web.