¿Cómo conseguir los mejores resultados con la Inteligencia Artificial?

Ahora es normal que las empresas busquen a consultoras expertas en las tecnologías emergentes para recibir ayuda y lograr mejores resultados en sus negocios. ¿Cuál es el problema? Muchas de estas empresas no hacen una correcta recogida de datos o tienen bases de datos erróneas. Esto complica los procesos de implantación.

Los procesos de implantación de inteligencia artificial deben tener una buena base para poder implantarse de forma efectiva. Por eso, la consultora TIC Setesca está alertando a las empresas de estos fallos. Esto quiere decir que es necesario que, previamente, los datos sean coherentes con el fin de poder efectuar procesos analíticos avanzados. De hecho, según un estudio reciente realizado por Gartner estima que aquellas grandes organizaciones que dispongan de una mala calidad de datos, tienen un promedio de 15 millones de pérdidas al año.

Datos de base incorrectos

Según datos de la consultora Experian, el 77% de las empresas cree que su resultado final se ve afectado por datos inexactos e incompletos. Además, este mismo estudio revela que el 66% de las compañías carece de un enfoque coherente y centralizado de la calidad de los datos. En este contexto, tal y como advierte el experto, muchas compañías, a la hora de lanzar proyectos de inteligencia artificial, invierten mucho tiempo y esfuerzo sin resultado, ya que sus modelos de información no son todo lo coherentes que esperaban. Estas situaciones son muy comunes en entornos donde se han producido procesos de integración de compañías, existen diferentes sistemas de reporting o analíticos o sistemas con datos provenientes de diferentes fuentes.

El 50% de las compañías no dispone de una base correcta de datos

La incoherencia se muestra cuando los analistas de datos tienen dificultades para comparar datos o se encuentran con “agujeros” de información. Se estima que estas situaciones suelen suceder en un 50% de las compañías. Todo ello dificulta enormemente los procesos de analítica avanzada o incluso llega a enmascarar problemas graves de negocio. Esta situación provoca, por ejemplo, que en los proyectos de implantación de sistemas de reporting avanzado o análisis predictivo, un 80% del esfuerzo se dedique a depurar la información y solamente un 20% al proceso analítico.

Ahorro de las empresas al depurar la información

La oportunidad está en el ahorro que las empresas pueden conseguir depurando esta información. Solamente, en la simplificación de procesos de análisis el ahorro es enorme. Además, se consigue que toda la organización trabaje bajo los mismos principios. Estos procesos de depuración de la información se han mejorado mucho gracias a la aparición de herramientas de tipo RPA y de análisis avanzado de información.

TE PUEDE GUSTAR

EVENTOS

RECIBE NUESTRA NEWSLETTER

*Email:

*Nombre:

*Empresa:

Cargo:

Sector:
     

Please don't insert text in the box below!

ESCUCHA NUESTRO PODCAST

SÍGUENOS EN RRSS

MÁS COMENTADOS

Scroll al inicio
Resumen de privacidad

Las cookies y otras tecnologías similares son una parte esencial de cómo funciona nuestra web. El objetivo principal de las cookies es que tu experiencia de navegación sea más cómoda y eficiente y poder mejorar nuestros servicios y la propia web. Aquí podrás obtener toda la información sobre las cookies que utilizamos y podrás activar y/o desactivar las mismas de acuerdo con tus preferencias, salvo aquellas Cookies que son estrictamente necesarias para el funcionamiento de la web de BigDataMagazine. Ten en cuenta que el bloqueo de algunas cookies puede afectar tu experiencia en la web y el funcionamiento de la misma. Al pulsar “Guardar cambios”, se guardará la selección de cookies que has realizado. Si no has seleccionado ninguna opción, pulsar este botón equivaldrá a rechazar todas las cookies. Para más información puedes visitar nuestra Políticas de Cookies. Podrás cambiar en cualquier momento tus preferencias de cookies pinchando en el enlace “Preferencias de cookies” situado en la parte inferior de nuestra web.