Así se puede convertir una empresa tradicional en una compañía data-driven

Planificación de la gestión de los datos, contar con profesionales en la materia o el establecimiento de procesos sólidos son los secretos para que una empresa tradicional sea data-driven.

De empresa tradicional a empresa conducida por datos. El informe ‘The Disruptive Potential of Digital Platforms’ pone de manifiesto que mientras en 1995 las 10 empresas más valiosas eran empresas clásicas, en la actualidad 6 de estas compañías son plataformas digitales. La clave de su éxito se basa en emplear la tecnología.

Expertos de Opentrends han establecido dichas claves tanto a nivel interno  como externo que necesitan las empresas tradicionales para convertirse en empresas data-driven. El CEO de la compañía, Juan José Giménez, asegura que «todas estas empresas han logrado su éxito porque han conseguido aprovechar al máximo el valor del dato”.

Claves para ser una empresa data-driven

1- Diseñar la gestión de los distintos tipos de datos

La IA puede procesar cuatro tipos de datos, y para cada uno habrá que utilizar diferentes técnicas y modelos: datos de imagen (verificación de identidades, detección de objetos en imágenes…), datos de sensores (mantenimiento predictivo, procesos industriales, proyectos de Smart Cities…), datos de idioma (transcripción de voz a texto, asistentes virtuales, análisis de los sentimientos…); y datos transaccionales (recomendaciones de productos, precios y promociones personalizados, detección de tendencias y previsión de la demanda…).

2- Elegir los perfiles profesionales adecuados

Para lograr implementar una estrategia de IA exitosa será esencial determinar desde un principio las diferentes competencias y los profesionales que se ocuparán de gestionarlas: científicos de datos, capacitados para manejar datos en masa y crear algoritmos de ML; especialistas de TI, que crean los data lakes, eliminan los silos y garantizan la accesibilidad de los datos; o Domain Experts, que garantizan que los algoritmos añaden valor y detectan los cambios necesarios en los procesos. Abordar un proyecto de IA con éxito dependerá de que las personas de las tres áreas trabajen juntas con una comprensión básica de cada una de ellas.

3- Establecer procesos sólidos y precisos

De lo comentado anteriormente cabe deducir que los primeros desafíos suelen provenir de la falta de datos, o de personal especializado, o de ambos, lo que puede requerir una inversión inicial importante. Por otro lado, será primordial establecer nítidamente los procesos a los que se aplicará IA, y establecer sub-proyectos compartimentados pero interdependientes para arrojar resultados e ir escalando con el tiempo a medida que ganamos aceptación en el resto de la compañía.

4- Asesoría externa y visión a largo plazo

Más allá de la definición de los datos, de los perfiles profesionales y de los procesos a liberar, en la actualidad, la empresa (su equipo técnico) no tiene por qué cargar necesariamente con todo el peso del proyecto. En su lugar, lo más sensato suele ser contar con un partner plenamente especializado en IA, que aporte una visión integral y en perspectiva y que ofrezca la garantía de haber realizado con éxito numerosos proyectos en diversos sectores, y que aporte asesoría y externalización, incluyendo proyectos “llave en mano” para determinados hitos, en combinación con servicios de más largo recorrido como una oficina de datos.

5- Posibles recursos: Inteligencia Artificial “off-the-shelf”

Las nuevas tecnologías permiten a las empresas adoptar modelos “off-the-shelf”, que pone a disposición de los equipos de TI potentes algoritmos, bien entrenados, a través de servicios de pay-per-use. Esto representa una oportunidad única para aquellos que se están iniciando, ya que se pueden utilizar en casos específicos, bien estandarizados, reduciendo así notablemente el tiempo de desarrollo y subida a producción. Es interesante, en este caso, poder contar con una consultora que aporte especialización en arquitecturas modulares y eficientes basadas en PaaS y componentes serverless aprovechando el potencial de clouds públicas como AWS.

TE PUEDE GUSTAR

EVENTOS

RECIBE NUESTRA NEWSLETTER

*Email:

*Nombre:

*Empresa:

Cargo:

Sector:
     

Please don't insert text in the box below!

ESCUCHA NUESTRO PODCAST

SÍGUENOS EN RRSS

MÁS COMENTADOS

Scroll al inicio
Resumen de privacidad

Las cookies y otras tecnologías similares son una parte esencial de cómo funciona nuestra web. El objetivo principal de las cookies es que tu experiencia de navegación sea más cómoda y eficiente y poder mejorar nuestros servicios y la propia web. Aquí podrás obtener toda la información sobre las cookies que utilizamos y podrás activar y/o desactivar las mismas de acuerdo con tus preferencias, salvo aquellas Cookies que son estrictamente necesarias para el funcionamiento de la web de BigDataMagazine. Ten en cuenta que el bloqueo de algunas cookies puede afectar tu experiencia en la web y el funcionamiento de la misma. Al pulsar “Guardar cambios”, se guardará la selección de cookies que has realizado. Si no has seleccionado ninguna opción, pulsar este botón equivaldrá a rechazar todas las cookies. Para más información puedes visitar nuestra Políticas de Cookies. Podrás cambiar en cualquier momento tus preferencias de cookies pinchando en el enlace “Preferencias de cookies” situado en la parte inferior de nuestra web.