Análisis de datos en el deporte: Equipo ciclista de Movistar

30 mayo, 2018
15 Compartido 1,657 Visualizaciones

Hoy día el big data no es cosa de las grandes empresas. La tecnología que permite convertir los datos desestructurados y estructurados en información e inteligencia, se ha democratizado y es accesible ya para todas las empresas independientemente de su tamaño e independientemente de su sector. ¿Big data en el deporte? Sí.

Durante la pasada edición del DES 2018 (Digital Enterprise Show), en Madrid pudimos comprobar cómo está tecnología está funcionando perfectamente dentro del sector del deporte y la utilidad y valor que aporta el análisis de los datos para mejorar la toma de decisiones de cara a mejorar el rendimiento de los equipos en las competiciones.

Concretamente, en el DES 2018, asistimos a la ponencia titulada “Data Analysis in Sport: Movistar Cycling Team”, una ponencia durante la cual,  Mikel Zabala, Head of performance / Senior  lecturer at Movistar Cycling Team y Elena Poughia, Managing Director at Data Natives & Dataconomy Media.

¿Qué es el Movistar Cycling Team?

Movistar Team es el equipo ciclista más longevo y exitoso en cuanto a trayectoria del UCI WorldTour, la máxima categoría del ciclismo internacional que engloba a las 18 mejores escuadras del mundo. En 2018 cumple su 39ª temporada en el pelotón profesional y está formado por 25 corredores, además de las 10 corredoras que componen su nuevo equipo femenino. Un amplio staff técnico completa una estructura de más de setenta profesionales. Alejandro Valverde, Nairo Quintana y Mikel Landa son los líderes de Movistar Team para esta temporada.

Además de sus más de 900 victorias, el equipo ha acabado 1º en el ranking mundial por equipos en seis ocasiones: 1992, 2008 y, ya como Movistar Team, en cuatro años consecutivos entre 2013 y 2016.

Movistar Cycling Team & Data Analysis

Según explicó durante su ponencia Mikel Zabala, actualmente la analítica de datos en el sector del ciclismo (y del deporte) en general, ayuda mucho en la mejora de los equipos.

Concretamente, en Movistar Cycling Team, usan unos sensores incrustados en las bicicletas que permiten generar un gran volumen de datos de todo tipo, datos que se interpretan y se convierten en información muy útil para mejorar el rendimiento del equipo.

“Al final podemos usar todos estos datos para crear algoritmos y que nos ayuden a detectar otras situaciones. Sabemos que el rendimiento viene definido por la intensidad (power, speed or heart rate). Pero también y sobre todo, sabemos que  los sentimientos pueden venir definidos por variables como la recuperación o los esfuerzos. Todos estos datos los recogemos y los analizamos”. Explicó Zabala.

De esta manera, y siguiendo con los sensores que usa el equipo ciclista de Movistar, según explicó Zabala, una muestra de un segundo generada durante una competición o una sesión de entrenamiento incluye datos como:

  • Tiempo.
  • GPS, posición, rampa, elevación.
  • Temperatura.
  • Cadencia (rpm).
  • Power (Watts).
  • Velocidad
  • Balance de izquierda a derecha.
  • Ratios del corazón.
  • Decenas de nuevas variables generadas como NP, IF, TSS…etc

Durante la sesión, explicaron también los principales motivos por los cuales es muy importante generar este tipo de datos en una competición deportiva. Y no sólo generarlos sino interpretarlos.

Pero, ¿por qué utilizar este sensor en lugar de utilizar otros softwares ya disponibles en el mercado?

Uno de los motivos principales es que utilizando este tipo de sensores podemos obtener analíticas mucho más avanzadas que nos permiten llegar a predecir variables como la fatigues o la recuperación, de manera mucho más acertada.  Igualmente, la recopilación de todo tipo de datos a partir de los sensores permite a los entrenadores poder dar su opinión a partir de las ciencias del deporte y los métodos de entrenamiento más sofisticados. Además de estos motivos, Zabala expuso otros como por ejemplo:

  • Son diseñados específicamente para el equipo, es decir, son personalizados.
  • Los sentimientos (RPE), están incluidos como una variable clave complementaria.
  • Simplicidad. Se ajusta a lo que el equipo necesita.
  • Todos los datos del equipo están disponibles en una sóla herramienta.
  • Individualización: Un atleta, datos personales, gráficas y feedback.  

Sin duda alguna, este software le permite al equipo tomar decisiones muy personalizadas de entrenamiento para cada atleta pero sin duda el valor de dicho software o el cocktail de innovación que le permite al equipo de Movistar realizar esta interpretación de datos “está basado en la generación de datos de forma masiva, pero datos de calidad. También es clave la inversión en Investigación y desarrollo en el mundo de las ciencias del deporte. La conectividad en la nube y la analítica avanzada e individualizada para cada atleta, construirían las otras claves que completan este cocktail de éxito en el mundo del deporte”.  Explicó Zabala.

Pero los datos analíticos en el deporte no sólo se limitan a los datos que puedan generarse a través de la propia actividad del equipo sino que tal y como explicaron durante la sesión, es muy importante y sobre todo en competiciones medir la audiencia y tener la máxima información de la misma. En este sentido, Zabala comentó que en base a los espectadores de televisiones de pago, tienen en cuenta la analítica generada en cuanto a audiencia por día, audiencia por canal de TV y sobre todo audiencia por cada provincia que recorre La Vuelta, por ejemplo.

DES 2018

Mikel Zabala, Head of performance / Senior lecturer at Movistar Cycling Team durante su intervención

Igualmente, los datos que se generan en las redes sociales durante un evento como por ejemplo la Vuelta, son muy tenidos en cuenta por el equipo de Movistar y analizados. Tomando como base la red social Twitter, recopilan información acerca del volumen de tweets alcanzados y menciones alcanzadas  durante un día, comparan la interacción internacional y nacional durante un minuto determinado y analizan los sentimientos generados tanto positivos como negativos así como el peso de los influence

Ahora nos estamos acercando a la Fórmula 1 aunque es una competición muy diferente. El reto o el siguiente paso para nosotros es acercarnos a la a este otro deporte y poder aportar información en los datos que recogemos en tiempo real, de manera que los equipos puedan tomar decisiones mucho más rápidas.” continuó Zabala.

Hay muchas aplicaciones gratuitas que nos permiten medir nuestras variables en términos de salud. Igual en términos de deportes. Ahora creo que debemos trabajar más en saber qué variables son más importantes que otras, en la información”. Concluyó Zabala.

Te podría interesar

Blockchain toma cuerpo entre las grandes empresas: 4 de cada 5 directivos asegura tener iniciativas en marcha
Actualidad
21 compartido931 visualizaciones
Actualidad
21 compartido931 visualizaciones

Blockchain toma cuerpo entre las grandes empresas: 4 de cada 5 directivos asegura tener iniciativas en marcha

Vicente Ramírez - 18 septiembre, 2018

La incertidumbre regulatoria, junto con la falta de confianza, son los principales obstáculos para el desarrollo de blockchain. En 2030, entre el 10% y el 20% de…

Amazon comienza a testear sus robots para los envíos a domicilio: “Scout”
Actualidad
10 compartido558 visualizaciones
Actualidad
10 compartido558 visualizaciones

Amazon comienza a testear sus robots para los envíos a domicilio: “Scout”

Vicente Ramírez - 30 enero, 2019

Amazon ha presentado su propio robot de 6 ruedas para abastecer las entregas a domicilio en las urbanizaciones. “Scout”, el nombre con el que se le ha…

El MIT construirá un colegio de Inteligencia Artificial por $10 mil millones
Inteligencia Artificial
17 compartido2,006 visualizaciones
Inteligencia Artificial
17 compartido2,006 visualizaciones

El MIT construirá un colegio de Inteligencia Artificial por $10 mil millones

Mónica Gallego - 24 octubre, 2018

El MIT invierte 10 mil millones de dólares en el desarrollo de un nuevo colegio de Inteligencia Artificial (IA) que  creará 50 posiciones para académicos y mucho más…

Dejar comentario

Su email no será publicado