La seguridad en los tiempos del Big Data

5 marzo, 2018
12 Compartido 784 Visualizaciones

La cantidad de datos generados en el entorno empresarial a día de hoy crece a un ritmo exponencial. Los responsables de TI son conscientes de que estos flujos masivos de información suponen una oportunidad y están apostando por herramientas para poder ordenar y analizar dicha información de la manera más apropiada.

De hecho, según datos de IDC, la inversión en software de Big Data y Business Analytics alcanzará los 210.000 millones de dólares en 2020. Pero este nuevo entorno empresarial dominado por el Big Data también supone un reto: ¿cómo podemos proteger un volumen de datos en continuo crecimiento?

El Big Data desde el punto de vista de la seguridad

Existen dos aspectos fundamentales del Big Data que varían radicalmente el asunto a tratar. El primero es el más obvio: ¿cómo securizar la ingente cantidad de información de los clientes y de la empresa con un canal masivo de datos abierto? La segunda, más práctica, consiste en emplear las técnicas de análisis de Big Data aplicadas a la seguridad para nuestro beneficio.

En el primero de los casos, el problema comienza con la clasificación e identificación. Es imprescindible poder identificar adecuadamente tanto la información como las fuentes que la producen y que la procesan. Es necesario, por tanto, clasificar la información (tipología, procedencia, estructura…) de lo que vamos almacenando. Esto nos facilitará la tarea de construir un ordenado entorno Big Data que resultará mucho más fácil de controlar.

Hacerlo supone, también, la unión de un entorno en la nube con el almacenamiento y procesamiento del Big Data, lo que requerirá nuevas medidas de seguridad acordes. La correcta clasificación también propiciará la creación de un entorno encriptado por atributos, lo que resultará en una mejor seguridad dentro del entorno Big Data.

En el segundo de los casos, si buscamos usar el Big Data en beneficio de la seguridad, las formas de aplicación son muchas y muy beneficiosas, aunque dependerán por completo de nuestros sistemas e intereses. Por ejemplo, los grandes flujos de datos nos dan acceso a patrones predictivos (que podrían prever un ataque o el comportamiento de nuestros clientes, por ejemplo).

El análisis del Big Data nos permite, además, extraer información útil de diferentes fuentes y al mismo tiempo, lo que se traduce en poder maximizar la información procedente de los logs casi en tiempo real. Un ejemplo de su aplicación lo vemos en la eficiencia de los SIEM e IDS, que pueden beneficiarse del Big Data usando las técnicas más punteras de Machine Learning para aprender rápidamente los comportamientos y fuentes potencialmente perniciosos.

¿Qué hay que tener en cuenta en la relación Seguridad-Big Data?

A la hora de hablar de la seguridad de la información que manejamos en nuestra empresa, la era del Big Data entraña diferentes retos que deben ser tenidos en cuenta. Por ejemplo, la securización de las transacciones y los logs requiere de un sistema eficiente de auto-tiering que almacene adecuadamente la información. Además, resulta esencial disponer de un buen sistema de localización de dicha información.

Es imprescindible securizar las operaciones en frameworks de procesamiento distribuido (DFC), así como otros procesos, y validar (y filtrar) las entradas en los endpoints, asegurando el uso legítimo de estos. Si el acceso se viera vulnerado, algo que suele ocurrir tras un cierto tiempo, es importante mantener los datos correctamente protegidosmediante encriptación, lo que no evita que haya que asegurar la comunicación entre dispositivos.

Como decíamos, la clasificación de la información es un punto crítico a la hora de hablar de seguridad y Big Data, pero también lo es velar por un buen comportamiento de seguridad. Realizar regularmente auditorías y tener en mente un modelo de control de acceso granular nos permitirá mantener un contexto de seguridad en el que aplicar las soluciones concretas asociadas al manejo y almacenamiento del Big Data.

Gracias a soluciones como Panda Adaptive Defense 360, que emplea técnicas de machine learning para clasificar todo lo que ocurre en nuestros sistemas de forma más efectiva, podemos detectar y bloquear procesos maliciosos, fugas de información, vulnerabilidades o, incluso, remediar el daño ocasionado por una brecha de seguridad. Y es que ahora contamos con la inteligencia artificial más puntera y aplicaciones de lo que se conoce como inteligencia contextual para ayudar a la enorme tarea de mantener seguro un entorno asociado al Big Data.

Te podría interesar

Machine learning para acertar a la primera con las tallas
Eventos
18 compartido2,079 visualizaciones
Eventos
18 compartido2,079 visualizaciones

Machine learning para acertar a la primera con las tallas

Mónica Gallego - 8 noviembre, 2018

El pasado jueves 25 de octubre se celebró la VI Edición del Mobile Commerce Congress. El evento anual organizado por Ecommerce News, portal líder en información sobre…

Google Cloud Summit: El cloud como oportunidad para aumentar el potencial de los negocios
Actualidad
10 compartido870 visualizaciones
Actualidad
10 compartido870 visualizaciones

Google Cloud Summit: El cloud como oportunidad para aumentar el potencial de los negocios

Vicente Ramírez - 14 mayo, 2018

El cloud se emerge como una tecnología que permite mejorar la eficiencia y productividad de una empresa. La semana pasada tuvo lugar en la ciudad de Madrid  la…

¿Proteccionismo de datos no personales? Europa impulsa la libre circulación
BD Network
13 compartido1,998 visualizaciones
BD Network
13 compartido1,998 visualizaciones

¿Proteccionismo de datos no personales? Europa impulsa la libre circulación

Mónica Gallego - 11 octubre, 2018

Europa aprobó la semana pasada un nuevo reglamento para impulsar la libre circulación de datos no personales con 520 votos a favor, 81 en contra y 6 abstenciones,…

Dejar comentario

Su email no será publicado